
Magento 2
and

Composer

Peter Jaap
Blaakmeer
CTO elgentos
@PeterJaap

Also; co-organizer MUG050, volunteer Meet Magento NL,
beer home-brewing & board games (so I like IPA’s and API’s).

What is composer?

Dependency management in PHP

Not a package manager; composer by default
installs modules on a per-project basis, not globally.

Why would you use Composer?

Time save
Code reuse

Code sharing
Easy upgrades

Same code usage
Easy removal

Forces you to write clean code; no hacking

brew update && brew install homebrew/php/composer

Install composer

composer.phar 
composer.json
composer.lock

Composer components 
(see what I did there?)

composer.phar
Binary used to work with composer

composer.phar

Most used commands

$ composer update
$ composer install
$ composer require

$ composer create-project

Projects’ composer.json

Extensions’ composer.json
{
 "name": “elgentos/mage2importer",
 "description": “Fast refactored Magento 2 product importer",
 "type": “magento2-module", // or magento2-theme / magento2-language / metapackage
 "version": "1.3.37",
 "license": [
 "OSL-3.0",
 "AFL-3.0"
],
 "require": {
 "php": "~5.5.0|~5.6.0|~7.0.0",
 "magento/framework": "~100.0"
 },
 "extra": {
 "map": [
 [
 "*",
 "Elgentos/Mage2Importer"
]
]
 }
}

composer.lock

Lockfile created when running composer update

composer.lock

What is the lock file for?

It ensures every developer uses the same version of the packages.

composer update - installs the latest versions referenced in composer.json &
save commit hash in lock file.

composer install - installs a specific version identified by a commit hash in the
lock file.

How to handle composer files in Git?

You should commit composer.json to keep track of
 which extensions are installed.

You can commit composer.lock but it is not necessary,
depends on your deployment structure, but you’ll 

probably get a lot of merge conflicts.

require vs require-dev

‘require’ is for production modules

‘require-dev’ is for dev modules

Run ‘composer install —no-dev’ on your production server to  
skip installing development modules

 "require-dev": {
 "aoepeople/aoe_templatehints": "^0.4",
 "aoepeople/aoe_profiler": “^0.3",
 "pulsestorm/magento-better404": "^1.0"
 },

Composer repositories

Packagist (default)
http://packages.magento.com/
http://packages.firegento.com/

Set up your own with Satis / Toran Proxy

http://packages.magento.com/
http://packages.firegento.com/

Here’s a Talesh for good measure

Magento 1 + composer

Not supported by the core, but, of course, there’s a module for that;

https://github.com/Cotya/magento-composer-installer

- This places the files in your composer module in the correct paths  
by using symlinks

- Tell the installer where to place your files through a modman file, package.xml or in the
composer.json file itself through extra > map.

- You need to add the Magento root dir to your projects’ composer.json;

{
 ...
 "extra":{
 "magento-root-dir":"./htdocs"
 }
}

https://github.com/Cotya/magento-composer-installer

Magento 2 + composer

Built-in support!

Magento itself consists of a large number of composer packages, 
both from 3rd party and internal components.

Magento 2 composer packages

Extensions
Libraries

Language packs
Themes

etc

Are installed in vendor

Repository authentication

Why?

Keeping track of installed extensions
Keeping track of extensions purchased through Marketplace

Notifications of new versions!
Installing of patches!

How?

Through your magento.com account - log in with your normal account and create a
username/password combo for composer authentication.

These credentials are saved in var/composer_home/auth.json so you can Git it.

http://magento.com

Custom extensions

Why?

Easy installable, updatable and reusable code.

How?

Place each extension in a separate Git repository
Add a composer.json that sets the name and dependencies

Add the Git repo link to the projects’ composer.json file
Run composer update

Commit composer.json to Git

Metapackages

A metapackage is a package that consists of multiple other packages.

You can use this to bundle extensions that are often used together.

Example - editing composer.json

And run composer update.

{
"require”: {
[…]
"elgentos/autoinvoice”: "^0.1.2”,

},
"repositories”: {
"elgentos/autoinvoice”: {
"type”: "vcs”,
"url”: "git@github.com:elgentos/AutoInvoice.git”

},
[…]

}
}

‘repositories’ part is not necessary when package exists in Packagist/other added repos

Example - using composer.phar

Semantic versioning
- MAJOR.MINOR.PATCH
- works through Git tag
- tag every versioned release
- never use ‘dev-master’ or similar
- semver.org

Specific version: 1.0.2
Range: >=1.0 <2.0

Range shortcut: ^1.2 (equal to >= 1.2.0 < 2.0.0, recommended)

Examples

Tilde; ~1.2.3 will match all 1.2.x versions but will miss 1.3.0
Caret; ^1.2.3 will match any 1.x.x release including 1.3.0, but not 2.0.0

Range modifiers

http://semver.org

Bottom line

- Using composer makes your code and your workflow more robust
- If you don’t use it yet, start using it NOW!
- Get hands-on experience by starting to use it with Magento 1

